An error occurred on this page.
These results could be incomplete or invalid. Staff have been notified.



Project measure / variable:   Odet2   sperm_vigor_30

ID, description, units MPD:53836   sperm_vigor_30   percentage of motile sperm that are 'vigorous'   [%]  at 30 min  
Data set, strains Odet2   inbred w/CC8   8 strains     sex: m     age: 10-66wks
Procedure microscopy
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Odet2 - percentage of motile sperm that are 'vigorous' at 30 min



  MEASURE SUMMARY
Measure Summary Male
Number of strains tested8 strains
Mean of the strain means48.2   %
Median of the strain means43.5   %
SD of the strain means± 19.2
Coefficient of variation (CV)0.398
Min–max range of strain means22.5   –   79.4   %
Mean sample size per strain13.1   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 7 35408.9536 5058.4219 21.6419 < 0.0001
Residuals 97 22672.046 233.7324


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ m 32.2 12.4   15 3.19 0.383 10.1, 55.3 -0.83
A/J m 42.4 16.0   16 4.01 0.378 5.6, 63.8 -0.3
C57BL/6J m 41.6 22.7   11 6.85 0.546 1.8, 66.5 -0.35
CAST/EiJ m 22.5 7.73   12 2.23 0.344 11.4, 39.8 -1.34
NOD/ShiLtJ m 44.6 26.1   10 8.25 0.584 10.4, 81.7 -0.19
NZO/HlLtJ m 50.5 9.73   12 2.81 0.193 36.6, 67.7 0.12
PWK/PhJ m 72.6 14.8   15 3.81 0.203 43.1, 96.8 1.27
WSB/EiJ m 79.4 7.0   14 1.87 0.0882 67.8, 90.9 1.62


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ m 32.2267 3.9474 40.0612 24.3921
A/J m 42.4375 3.8221 50.0233 34.8517
C57BL/6J m 41.6455 4.6096 50.7942 32.4967
CAST/EiJ m 22.475 4.4134 31.2343 13.7157
NOD/ShiLtJ m 44.65 4.8346 54.2453 35.0547
NZO/HlLtJ m 50.525 4.4134 59.2843 41.7657
PWK/PhJ m 72.5667 3.9474 80.4012 64.7321
WSB/EiJ m 79.3714 4.086 87.481 71.2619




  GWAS USING LINEAR MIXED MODELS