Project measure / variable:   Bolivar1   margin_dist_d2

ID, description, units MPD:63441   margin_dist_d2   distance traveled in periphery, 5 min test in dark   [cm]  day 2  
Data set, strains Bolivar1   inbred   10 strains     sex: both     age:
Procedure open field test
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Bolivar1 - distance traveled in periphery, 5 min test in dark day 2



  MEASURE SUMMARY
Measure Summary FemaleMale
Number of strains tested10 strains10 strains
Mean of the strain means895.1   cm 905.3   cm
Median of the strain means862.9   cm 1014.0   cm
SD of the strain means± 190.0 ± 287.5
Coefficient of variation (CV)0.2122 0.3176
Min–max range of strain means683.7   –   1298.0   cm 498.5   –   1222.0   cm
Mean sample size per strain12.0   mice 12.0   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
sex 1 6222.0167 6222.0167 0.0705 0.7908
strain 9 4892932.4 543659.1556 6.1621 < 0.0001
sex:strain 9 7934215.15 881579.4611 9.9923 < 0.0001
Residuals 220 19409676.8333 88225.8038


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ f 927.7 473.6   12 136.7 0.5105 150.0, 1557.0 0.17
129S1/SvImJ m 509.7 392.7   12 113.4 0.7705 61.0, 1405.0 -1.38
A/J f 683.7 235.6   12 68.0 0.3445 203.0, 978.0 -1.11
A/J m 613.6 249.4   12 71.99 0.4064 154.0, 981.0 -1.01
B6129SF1/J f 764.8 368.9   12 106.5 0.4824 332.0, 1421.0 -0.69
B6129SF1/J m 1143.0 428.2   12 123.6 0.3745 530.0, 1822.0 0.83
B6C3F1/J f 1124.0 406.5   12 117.4 0.3616 561.0, 1806.0 1.21
B6C3F1/J m 1160.0 317.6   12 91.68 0.2739 691.0, 1785.0 0.89
BALB/cByJ f 923.1 278.1   12 80.28 0.3013 147.0, 1242.0 0.15
BALB/cByJ m 1222.0 269.0   12 77.65 0.2201 782.0, 1533.0 1.1
C3H/HeJ f 783.9 133.2   12 38.44 0.1699 572.0, 1021.0 -0.59
C3H/HeJ m 1041.0 292.1   12 84.33 0.2807 621.0, 1480.0 0.47
C57BL/6J f 889.4 254.9   12 73.58 0.2866 470.0, 1453.0 -0.03
C57BL/6J m 987.7 233.6   12 67.43 0.2365 557.0, 1341.0 0.29
CBA/J f 836.4 191.9   12 55.39 0.2294 337.0, 1143.0 -0.31
CBA/J m 729.2 196.3   12 56.66 0.2692 518.0, 1087.0 -0.61
DBA/2J f 1298.0 257.1   12 74.23 0.1981 800.0, 1669.0 2.12
DBA/2J m 498.5 261.1   12 75.36 0.5237 81.0, 811.0 -1.41
FVB/NJ f 719.8 171.8   12 49.603 0.2387 354.0, 1005.0 -0.92
FVB/NJ m 1148.0 267.1   12 77.11 0.2326 791.0, 1695.0 0.84


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ f 927.6667 85.7447 1096.6528 758.6806
129S1/SvImJ m 509.6667 85.7447 678.6528 340.6806
A/J f 683.6667 85.7447 852.6528 514.6806
A/J m 613.5833 85.7447 782.5694 444.5972
B6129SF1/J f 764.8333 85.7447 933.8194 595.8472
B6129SF1/J m 1143.4167 85.7447 1312.4028 974.4306
B6C3F1/J f 1124.3333 85.7447 1293.3194 955.3472
B6C3F1/J m 1159.5833 85.7447 1328.5694 990.5972
BALB/cByJ f 923.0833 85.7447 1092.0694 754.0972
BALB/cByJ m 1222.1667 85.7447 1391.1528 1053.1806
C3H/HeJ f 783.9167 85.7447 952.9028 614.9306
C3H/HeJ m 1040.8333 85.7447 1209.8194 871.8472
C57BL/6J f 889.4167 85.7447 1058.4028 720.4306
C57BL/6J m 987.6667 85.7447 1156.6528 818.6806
CBA/J f 836.4167 85.7447 1005.4028 667.4306
CBA/J m 729.25 85.7447 898.2361 560.2639
DBA/2J f 1297.9167 85.7447 1466.9028 1128.9306
DBA/2J m 498.5 85.7447 667.4861 329.5139
FVB/NJ f 719.8333 85.7447 888.8194 550.8472
FVB/NJ m 1148.25 85.7447 1317.2361 979.2639


  LEAST SQUARES MEANS (MODEL-ADJUSTED), SEXES COMBINED
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ both 718.6667 60.6306 838.1579 599.1755
A/J both 648.625 60.6306 768.1162 529.1338
B6129SF1/J both 954.125 60.6306 1073.6162 834.6338
B6C3F1/J both 1141.9583 60.6306 1261.4495 1022.4671
BALB/cByJ both 1072.625 60.6306 1192.1162 953.1338
C3H/HeJ both 912.375 60.6306 1031.8662 792.8838
C57BL/6J both 938.5417 60.6306 1058.0329 819.0505
CBA/J both 782.8333 60.6306 902.3245 663.3421
DBA/2J both 898.2083 60.6306 1017.6995 778.7171
FVB/NJ both 934.0417 60.6306 1053.5329 814.5505




  GWAS USING LINEAR MIXED MODELS