Project measure / variable:   Schughart4   pctGRA_trt_d5

ID, description, units MPD:58774   pctGRA_trt_d5   granulocyte differential (GRA; percentage of total WBC), treated group   [%]  post-infection day 5  
influenza A (H3N2) virus study
Data set, strains Schughart4   inbred w/CC8   8 strains     sex: f     age: 8-12wks
Procedure complete blood count
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Schughart4 - granulocyte differential (GRA; percentage of total WBC), treated group post-infection day 5



  MEASURE SUMMARY
Measure Summary Female
Number of strains tested8 strains
Mean of the strain means27.7   %
Median of the strain means26.6   %
SD of the strain means± 14.5
Coefficient of variation (CV)0.524
Min–max range of strain means10.4   –   48.9   %
Mean sample size per strain7.1   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 7 8942.2756 1277.4679 18.4101 < 0.0001
Residuals 49 3400.0949 69.3897


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ f 43.4 9.64   5 4.31 0.222 34.4, 59.4 1.09
A/J f 33.6 11.6   6 4.72 0.344 18.2, 52.6 0.41
C57BL/6J f 19.6 3.5   11 1.05 0.179 14.1, 25.0 -0.56
CAST/EiJ f 16.4 11.1   10 3.5 0.674 1.0, 35.9 -0.78
NOD/ShiLtJ f 35.1 8.73   6 3.57 0.248 21.5, 43.9 0.51
NZO/HlLtJ f 10.4 9.0   6 3.67 0.864 1.9, 26.3 -1.19
PWK/PhJ f 13.8 5.27   8 1.86 0.381 4.2, 19.6 -0.96
WSB/EiJ f 48.9 6.23   5 2.79 0.128 39.8, 54.7 1.47


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ f 43.42 3.7253 50.9063 35.9337
A/J f 33.6167 3.4007 40.4507 26.7826
C57BL/6J f 19.5545 2.5116 24.6018 14.5073
CAST/EiJ f 16.43 2.6342 21.7236 11.1364
NOD/ShiLtJ f 35.15 3.4007 41.984 28.316
NZO/HlLtJ f 10.4167 3.4007 17.2507 3.5826
PWK/PhJ f 13.825 2.9451 19.7434 7.9066
WSB/EiJ f 48.86 3.7253 56.3463 41.3737




  GWAS USING LINEAR MIXED MODELS