Project measure / variable:   Schughart4   pctGRA_trt_d3

ID, description, units MPD:58773   pctGRA_trt_d3   granulocyte differential (GRA; percentage of total WBC), treated group   [%]  post-infection day 3  
influenza A (H3N2) virus study
Data set, strains Schughart4   inbred w/CC8   8 strains     sex: f     age: 8-12wks
Procedure complete blood count
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Schughart4 - granulocyte differential (GRA; percentage of total WBC), treated group post-infection day 3



  MEASURE SUMMARY
Measure Summary Female
Number of strains tested8 strains
Mean of the strain means25.5   %
Median of the strain means26.0   %
SD of the strain means± 10.4
Coefficient of variation (CV)0.407
Min–max range of strain means9.62   –   38.1   %
Mean sample size per strain7.5   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 7 4861.6695 694.5242 4.9819 0.0002
Residuals 52 7249.327 139.4101


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ f 38.1 24.5   6 10.0 0.643 5.6, 62.6 1.21
A/J f 33.0 9.86   6 4.03 0.298 20.0, 48.3 0.72
C57BL/6J f 17.6 11.0   11 3.32 0.628 3.3, 33.0 -0.76
CAST/EiJ f 22.4 12.5   11 3.77 0.558 5.2, 46.6 -0.3
NOD/ShiLtJ f 29.6 6.05   6 2.47 0.204 21.1, 38.9 0.39
NZO/HlLtJ f 9.62 4.75   6 1.94 0.494 3.5, 17.5 -1.53
PWK/PhJ f 17.0 5.55   9 1.85 0.326 10.3, 29.8 -0.82
WSB/EiJ f 36.8 10.5   5 4.71 0.286 30.7, 55.5 1.09


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ f 38.1167 4.8203 47.7893 28.4441
A/J f 33.0333 4.8203 42.7059 23.3607
C57BL/6J f 17.5545 3.56 24.6982 10.4109
CAST/EiJ f 22.4182 3.56 29.5619 15.2745
NOD/ShiLtJ f 29.6333 4.8203 39.3059 19.9607
NZO/HlLtJ f 9.6167 4.8203 19.2893 0.0
PWK/PhJ f 17.0 3.9357 24.8976 9.1024
WSB/EiJ f 36.8 5.2803 47.3958 26.2042




  GWAS USING LINEAR MIXED MODELS