Project measure / variable:   Schughart4   pctLYM_trt_d5

ID, description, units MPD:58754   pctLYM_trt_d5   lymphocyte differential (LYM; percentage of total WBC), treated group   [%]  post-infection day 5  
influenza A (H3N2) virus study
Data set, strains Schughart4   inbred w/CC8   8 strains     sex: f     age: 8-12wks
Procedure complete blood count
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Schughart4 - lymphocyte differential (LYM; percentage of total WBC), treated group post-infection day 5



  MEASURE SUMMARY
Measure Summary Female
Number of strains tested8 strains
Mean of the strain means68.6   %
Median of the strain means69.0   %
SD of the strain means± 15.3
Coefficient of variation (CV)0.222
Min–max range of strain means46.1   –   87.1   %
Mean sample size per strain7.1   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 7 9989.1979 1427.0283 21.7384 < 0.0001
Residuals 49 3216.6348 65.6456


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ f 53.7 10.1   5 4.51 0.188 38.7, 64.0 -0.98
A/J f 61.7 11.0   6 4.49 0.178 42.5, 74.4 -0.45
C57BL/6J f 76.3 4.61   11 1.39 0.0605 67.4, 85.1 0.5
CAST/EiJ f 80.5 9.77   10 3.09 0.121 63.4, 92.3 0.78
NOD/ShiLtJ f 59.8 8.18   6 3.34 0.137 49.5, 71.9 -0.58
NZO/HlLtJ f 87.1 8.71   6 3.56 0.1 70.9, 96.0 1.21
PWK/PhJ f 83.9 6.12   8 2.16 0.0729 74.3, 93.0 1.0
WSB/EiJ f 46.1 6.26   5 2.8 0.136 37.7, 53.9 -1.48


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ f 53.72 3.6234 61.0015 46.4385
A/J f 61.6667 3.3077 68.3138 55.0196
C57BL/6J f 76.3091 2.4429 81.2183 71.3999
CAST/EiJ f 80.54 2.5621 85.6888 75.3912
NOD/ShiLtJ f 59.75 3.3077 66.3971 53.1029
NZO/HlLtJ f 87.0667 3.3077 93.7138 80.4196
PWK/PhJ f 83.95 2.8646 89.7065 78.1935
WSB/EiJ f 46.06 3.6234 53.3415 38.7785




  GWAS USING LINEAR MIXED MODELS