Project measure / variable:   Schughart4   pctbw_trt_d1

ID, description, units MPD:58721   pctbw_trt_d1   body weight as percent of baseline, infected group   [%]  post-infection day 1  
influenza A (H3N2) virus study
Data set, strains Schughart4   inbred w/CC8   8 strains     sex: f     age: 8-12wks
Procedure body weight
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Schughart4 - body weight as percent of baseline, infected group post-infection day 1



  MEASURE SUMMARY
Measure Summary Female
Number of strains tested8 strains
Mean of the strain means97.8   %
Median of the strain means98.1   %
SD of the strain means± 1.78
Coefficient of variation (CV)0.0182
Min–max range of strain means93.9   –   99.7   %
Mean sample size per strain20.4   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 7 610.0563 87.1509 12.8297 < 0.0001
Residuals 155 1052.8975 6.7929


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ f 98.5 2.66   17 0.644 0.027 94.0, 103.0 0.37
A/J f 97.1 1.3   12 0.376 0.0134 94.7, 98.8 -0.41
C57BL/6J f 98.2 2.4   28 0.453 0.0244 93.9, 103.0 0.2
CAST/EiJ f 99.3 1.24   21 0.27 0.0125 97.7, 102.0 0.82
NOD/ShiLtJ f 99.7 3.22   18 0.76 0.0323 94.2, 104.0 1.04
NZO/HlLtJ f 98.0 2.84   26 0.556 0.0289 91.2, 106.0 0.09
PWK/PhJ f 93.9 3.27   31 0.588 0.0349 83.4, 98.8 -2.21
WSB/EiJ f 98.0 2.0   10 0.634 0.0204 95.6, 101.0 0.09


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ f 98.5259 0.6321 99.7746 97.2772
A/J f 97.1358 0.7524 98.6221 95.6496
C57BL/6J f 98.1929 0.4925 99.1658 97.2199
CAST/EiJ f 99.31 0.5687 100.4335 98.1865
NOD/ShiLtJ f 99.7256 0.6143 100.9391 98.512
NZO/HlLtJ f 97.9758 0.5111 98.9855 96.9661
PWK/PhJ f 93.8548 0.4681 94.7795 92.9301
WSB/EiJ f 98.03 0.8242 99.6581 96.4019




  GWAS USING LINEAR MIXED MODELS