Project measure / variable:   Loos1   preference_7

ID, description, units MPD:50704   preference_7   cognitive response: entries through preferred vs. non-preferred entrances into shelter    stability of change (7)  
Data set, strains Loos1   inbred   8 strains     sex: m     age: 8-19wks
Procedure home cage monitoring
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Loos1 - cognitive response: entries through preferred vs. non-preferred entrances into shelter stability of change (7)



  MEASURE SUMMARY
Measure Summary Male
Number of strains tested8 strains
Mean of the strain means0.0845   None
Median of the strain means0.136   None
SD of the strain means± 0.187
Coefficient of variation (CV)2.22
Min–max range of strain means-0.189   –   0.308   None
Mean sample size per strain36.0   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 7 10.002 1.4289 5.1011 < 0.0001
Residuals 280 78.4308 0.2801


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ m 0.0231 0.679   42 0.105 29.4 -1.0, 1.0 -0.33
A/J m 0.236 0.754   28 0.142 3.2 -1.0, 1.0 0.81
BALB/cJ m 0.308 0.494   25 0.0988 1.6 -0.881, 1.0 1.19
C3H/HeJ m 0.211 0.521   19 0.12 2.47 -0.9, 1.0 0.68
C57BL/6J m -0.189 0.344   86 0.0371 -1.82 -0.75, 0.851 -1.46
DBA/2J m -0.185 0.722   35 0.122 -3.9 -1.0, 1.0 -1.44
FVB/NJ m 0.134 0.371   26 0.0728 2.76 -0.852, 0.85 0.26
NOD/ShiLtJ m 0.138 0.293   27 0.0564 2.13 -0.419, 0.846 0.29


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ m 0.0231 0.0817 0.1838 -0.1377
A/J m 0.236 0.1 0.4328 0.0391
BALB/cJ m 0.3083 0.1059 0.5166 0.0999
C3H/HeJ m 0.2108 0.1214 0.4498 -0.0282
C57BL/6J m -0.1889 0.0571 -0.0765 -0.3012
DBA/2J m -0.1851 0.0895 -0.009 -0.3612
FVB/NJ m 0.1343 0.1038 0.3386 -0.07
NOD/ShiLtJ m 0.1379 0.1019 0.3384 -0.0626




  GWAS USING LINEAR MIXED MODELS