Project measure / variable:   Loos1   preference_6

ID, description, units MPD:50703   preference_6   cognitive response: entries through preferred vs. non-preferred entrances into shelter    avoidance learning (6)  
Data set, strains Loos1   inbred   8 strains     sex: m     age: 8-19wks
Procedure home cage monitoring
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Loos1 - cognitive response: entries through preferred vs. non-preferred entrances into shelter avoidance learning (6)



  MEASURE SUMMARY
Measure Summary Male
Number of strains tested8 strains
Mean of the strain means0.0403   None
Median of the strain means0.122   None
SD of the strain means± 0.221
Coefficient of variation (CV)5.47
Min–max range of strain means-0.413   –   0.218   None
Mean sample size per strain36.0   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 7 12.1114 1.7302 8.938 < 0.0001
Residuals 280 54.2018 0.1936


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ m 0.0606 0.579   42 0.0893 9.54 -1.0, 1.0 0.09
A/J m 0.0992 0.617   28 0.117 6.22 -1.0, 1.0 0.27
BALB/cJ m 0.218 0.502   25 0.1 2.3 -0.766, 1.0 0.81
C3H/HeJ m 0.19 0.516   19 0.118 2.71 -0.92, 1.0 0.68
C57BL/6J m -0.168 0.315   86 0.034 -1.88 -0.779, 0.538 -0.94
DBA/2J m -0.413 0.474   35 0.0801 -1.15 -1.0, 1.0 -2.06
FVB/NJ m 0.145 0.249   26 0.0488 1.72 -0.184, 0.819 0.47
NOD/ShiLtJ m 0.191 0.259   27 0.0498 1.36 -0.471, 0.833 0.68


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ m 0.0606 0.0679 0.1943 -0.073
A/J m 0.0992 0.0831 0.2629 -0.0644
BALB/cJ m 0.2178 0.088 0.391 0.0446
C3H/HeJ m 0.1903 0.1009 0.389 -0.0084
C57BL/6J m -0.1677 0.0474 -0.0743 -0.2611
DBA/2J m -0.413 0.0744 -0.2666 -0.5594
FVB/NJ m 0.1451 0.0863 0.3149 -0.0248
NOD/ShiLtJ m 0.1905 0.0847 0.3572 0.0238




  GWAS USING LINEAR MIXED MODELS