Project measure / variable:   Loos1   preference_5

ID, description, units MPD:50702   preference_5   cognitive response: entries through preferred vs. non-preferred entrances into shelter    avoidance learning (5)  
Data set, strains Loos1   inbred   8 strains     sex: m     age: 8-19wks
Procedure home cage monitoring
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Loos1 - cognitive response: entries through preferred vs. non-preferred entrances into shelter avoidance learning (5)



  MEASURE SUMMARY
Measure Summary Male
Number of strains tested8 strains
Mean of the strain means0.203   None
Median of the strain means0.198   None
SD of the strain means± 0.126
Coefficient of variation (CV)0.620
Min–max range of strain means0.0286   –   0.390   None
Mean sample size per strain36.0   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 7 4.2493 0.607 3.9144 0.0004
Residuals 280 43.4226 0.1551


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ m 0.294 0.538   42 0.083 1.83 -0.976, 1.0 0.73
A/J m 0.122 0.44   28 0.0832 3.62 -1.0, 0.907 -0.64
BALB/cJ m 0.265 0.398   25 0.0796 1.5 -0.86, 0.825 0.5
C3H/HeJ m 0.39 0.414   19 0.0949 1.06 -0.615, 0.905 1.49
C57BL/6J m 0.0286 0.284   86 0.0306 9.92 -0.507, 0.744 -1.39
DBA/2J m 0.0928 0.533   35 0.09 5.74 -0.727, 1.0 -0.87
FVB/NJ m 0.131 0.255   26 0.0499 1.94 -0.302, 0.738 -0.57
NOD/ShiLtJ m 0.298 0.228   27 0.0439 0.765 -0.405, 0.775 0.76


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ m 0.2936 0.0608 0.4133 0.174
A/J m 0.1217 0.0744 0.2682 0.0
BALB/cJ m 0.2646 0.0788 0.4196 0.1096
C3H/HeJ m 0.3904 0.0903 0.5682 0.2125
C57BL/6J m 0.0286 0.0425 0.1122 0.0
DBA/2J m 0.0928 0.0666 0.2238 0.0
FVB/NJ m 0.1313 0.0772 0.2833 0.0
NOD/ShiLtJ m 0.298 0.0758 0.4471 0.1488




  GWAS USING LINEAR MIXED MODELS