Project measure / variable:   Gershenfeld1   OFTcenter


  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Gershenfeld1 - average center time, 2 trials baseline



  MEASURE SUMMARY
Measure Summary Male
Number of strains tested12 strains
Mean of the strain means113   s
Median of the strain means126   s
SD of the strain means± 64.7
Coefficient of variation (CV)0.572
Min–max range of strain means4.50   –   193   s
Mean sample size per strain4.9   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 11 242025.7248 22002.3386 10.6307 < 0.0001
Residuals 50 103485.346 2069.7069


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S6/SvEvTac m 41.6 91.9   5 41.1 2.21 -1.11
A/J m 4.5 4.02   5 1.8 0.893 0.7, 11.1 -1.68
AKR/J m 106.0 33.8   5 15.1 0.32 53.4, 137.0 -0.11
BALB/cJ m 120.0 81.9   5 36.6 0.684 9.1, 228.0 0.1
C3H/HeJ m 131.0 32.9   5 14.7 0.252 94.5, 172.0 0.27
C57BL/6J m 180.0 32.3   5 14.4 0.18 132.0, 208.0 1.03
Crl:NMRI(Han) m 153.0 20.0   4 10.0 0.131 128.0, 176.0 0.61
DBA/2J m 42.0 31.4   5 14.1 0.749 3.1, 88.8 -1.1
FVB/NJ m 193.0 8.79   5 3.93 0.0455 178.0, 199.0 1.23
LP/J m 45.6 49.7   9 16.6 1.09 -1.04
SENCARA/PtJ m 171.0 31.6   4 15.8 0.185 147.0, 216.0 0.89
SWR/J m 171.0 19.6   5 8.78 0.115 146.0, 196.0 0.89


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S6/SvEvTac m 41.57 20.3455 82.4352 0.7048
A/J m 4.5 20.3455 45.3652 0.0
AKR/J m 105.78 20.3455 146.6452 64.9148
BALB/cJ m 119.66 20.3455 160.5252 78.7948
C3H/HeJ m 130.7 20.3455 171.5652 89.8348
C57BL/6J m 179.8 20.3455 220.6652 138.9348
Crl:NMRI(Han) m 153.0 22.747 198.6887 107.3113
DBA/2J m 41.98 20.3455 82.8452 1.1148
FVB/NJ m 193.4 20.3455 234.2652 152.5348
LP/J m 45.6 15.1647 76.0592 15.1408
SENCARA/PtJ m 171.25 22.747 216.9387 125.5613
SWR/J m 171.2 20.3455 212.0652 130.3348




  GWAS USING LINEAR MIXED MODELS