Project measure / variable:   Gershenfeld1   OFTrearing


  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Gershenfeld1 - vertical movements, rearing, 15 min test baseline



  MEASURE SUMMARY
Measure Summary Male
Number of strains tested12 strains
Mean of the strain means106   n
Median of the strain means92.6   n
SD of the strain means± 83.2
Coefficient of variation (CV)0.784
Min–max range of strain means0.800   –   244   n
Mean sample size per strain4.9   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 11 393203.7355 35745.7941 34.4172 < 0.0001
Residuals 50 51930.2 1038.604


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S6/SvEvTac m 0.8 0.837   5 0.374 1.05 -1.27
A/J m 9.8 7.33   5 3.28 0.748 -1.16
AKR/J m 90.4 42.8   5 19.1 0.473 33.0, 140.0 -0.19
BALB/cJ m 94.8 65.7   5 29.4 0.693 26.0, 183.0 -0.14
C3H/HeJ m 45.4 43.8   5 19.6 0.964 -0.73
C57BL/6J m 121.0 36.1   5 16.2 0.299 78.0, 159.0 0.18
Crl:NMRI(Han) m 224.0 33.1   4 16.6 0.148 186.0, 264.0 1.42
DBA/2J m 83.6 14.4   5 6.45 0.173 64.0, 98.0 -0.27
FVB/NJ m 244.0 32.5   5 14.5 0.133 198.0, 286.0 1.66
LP/J m 17.3 14.2   9 4.72 0.817 6.0, 52.0 -1.07
SENCARA/PtJ m 143.0 32.5   4 16.2 0.227 103.0, 175.0 0.44
SWR/J m 200.0 16.8   5 7.53 0.0841 173.0, 219.0 1.13


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S6/SvEvTac m 0.8 14.4125 29.7484 0.0
A/J m 9.8 14.4125 38.7484 0.0
AKR/J m 90.4 14.4125 119.3484 61.4516
BALB/cJ m 94.8 14.4125 123.7484 65.8516
C3H/HeJ m 45.4 14.4125 74.3484 16.4516
C57BL/6J m 120.8 14.4125 149.7484 91.8516
Crl:NMRI(Han) m 223.5 16.1137 255.8653 191.1347
DBA/2J m 83.6 14.4125 112.5484 54.6516
FVB/NJ m 244.4 14.4125 273.3484 215.4516
LP/J m 17.3333 10.7425 38.9102 0.0
SENCARA/PtJ m 143.0 16.1137 175.3653 110.6347
SWR/J m 200.4 14.4125 229.3484 171.4516




  GWAS USING LINEAR MIXED MODELS