Project measure / variable:   CSNA03   damping_in

ID, description, units MPD:112542   damping_in   number of days required for circadian rhythm amplitude to decrease to 36% of initial value, in fibroblast cultures, founders   [days]  
Data set, strains CSNA03   inbred w/CC8   8 strains     sex: both     age: 8-12wks
Procedure in vitro assay
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

CSNA03 - number of days required for circadian rhythm amplitude to decrease to 36% of initial value, in fibroblast cultures, founders



  MEASURE SUMMARY
Measure Summary FemaleMale
Number of strains tested8 strains8 strains
Mean of the strain means1.3464   days 1.3893   days
Median of the strain means1.299   days 1.3344   days
SD of the strain means± 0.15635 ± 0.18487
Coefficient of variation (CV)0.1161 0.1331
Min–max range of strain means1.1438   –   1.6065   days 1.1759   –   1.6553   days
Mean sample size per strain9.4   mice 9.0   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
sex 1 0.1058 0.1058 0.8687 0.353
strain 7 3.1764 0.4538 3.7243 0.001
sex:strain 7 0.5911 0.0844 0.693 0.6778
Residuals 131 15.9615 0.1218


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ f 1.1438 0.25342   10 0.08014 0.2216 0.7805, 1.6383 -1.3
129S1/SvImJ m 1.1759 0.15215   9 0.05072 0.1294 0.95975, 1.4837 -1.15
A/J f 1.6065 0.23164   9 0.07721 0.1442 1.2327, 1.9755 1.66
A/J m 1.592 0.23589   9 0.07863 0.1482 1.263, 2.023 1.1
C57BL/6J f 1.4615 0.33909   10 0.10723 0.232 0.686, 1.9333 0.74
C57BL/6J m 1.5455 0.4605   10 0.14562 0.298 0.8225, 2.3558 0.84
CAST/EiJ f 1.4866 0.39938   10 0.12629 0.2686 1.174, 2.5562 0.9
CAST/EiJ m 1.3845 0.29994   10 0.09485 0.2166 1.1042, 2.0335 -0.03
NOD/ShiLtJ f 1.2796 0.27777   9 0.09259 0.2171 0.9545, 1.8162 -0.43
NOD/ShiLtJ m 1.2843 0.27539   9 0.0918 0.2144 0.97, 1.8035 -0.57
NZO/HlLtJ f 1.2543 0.29217   8 0.1033 0.2329 0.91625, 1.7663 -0.59
NZO/HlLtJ m 1.2173 0.26122   7 0.09873 0.2146 0.841, 1.565 -0.93
PWK/PhJ f 1.3184 0.47026   10 0.14871 0.3567 0.668, 2.1473 -0.18
PWK/PhJ m 1.6553 0.61773   10 0.19534 0.3732 1.0813, 2.7815 1.44
WSB/EiJ f 1.2208 0.30266   9 0.10089 0.2479 0.7445, 1.5682 -0.8
WSB/EiJ m 1.2596 0.32666   8 0.11549 0.2593 0.75675, 1.544 -0.7


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ f 1.14381 0.1103827272 1.362173365 0.925446635
129S1/SvImJ m 1.1758611111 0.1163536107 1.406036308 0.9456859142
A/J f 1.6064666667 0.1163536107 1.8366418636 1.3762914697
A/J m 1.5920333333 0.1163536107 1.8222085303 1.3618581364
C57BL/6J f 1.4615 0.1103827272 1.679863365 1.243136635
C57BL/6J m 1.54551 0.1103827272 1.763873365 1.327146635
CAST/EiJ f 1.48661 0.1103827272 1.704973365 1.268246635
CAST/EiJ m 1.38446 0.1103827272 1.602823365 1.166096635
NOD/ShiLtJ f 1.2795777778 0.1163536107 1.5097529747 1.0494025808
NOD/ShiLtJ m 1.2842888889 0.1163536107 1.5144640858 1.054113692
NZO/HlLtJ f 1.25426875 0.1234116408 1.4984064139 1.0101310861
NZO/HlLtJ m 1.2172571429 0.1319325935 1.4782512839 0.9562630018
PWK/PhJ f 1.318355 0.1103827272 1.536718365 1.099991635
PWK/PhJ m 1.65527 0.1103827272 1.873633365 1.436906635
WSB/EiJ f 1.2208188889 0.1163536107 1.4509940858 0.990643692
WSB/EiJ m 1.25959375 0.1234116408 1.5037314139 1.0154560861


  LEAST SQUARES MEANS (MODEL-ADJUSTED), SEXES COMBINED
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ both 1.1598355556 0.0801911921 1.3184728624 1.0011982488
A/J both 1.59925 0.0822744272 1.7620084426 1.4364915574
C57BL/6J both 1.503505 0.0780523749 1.6579112161 1.3490987839
CAST/EiJ both 1.435535 0.0780523749 1.5899412161 1.2811287839
NOD/ShiLtJ both 1.2819333333 0.0822744272 1.4446917759 1.1191748907
NZO/HlLtJ both 1.2357629464 0.0903280719 1.4144534195 1.0570724734
PWK/PhJ both 1.4868125 0.0780523749 1.6412187161 1.3324062839
WSB/EiJ both 1.2402063194 0.0848065384 1.407973882 1.0724387569




  GWAS USING LINEAR MIXED MODELS